C-type natriuretic peptide induces human colonic myofibroblast relaxation.
نویسندگان
چکیده
Intestinal response to injury requires coordinated regulation of the tension exerted by subepithelial myofibroblasts (SEM). However, the signals governing relaxation of intestinal SEM have not been investigated. Our aim was to test the hypothesis that signal transduction pathways initiated by C-type natriuretic peptide (CNP) induce intestinal SEM relaxation. We directly quantified the effects of CNP on isometric tension exerted by cultured human colonic SEM. We also measured the effects of CNP on cGMP content, myosin regulatory light chain (MLC) phosphorylation, and cytosolic Ca2+ concentration. CNP induced relaxation of SEM within 10 s. By 10 min, relaxation reached a plateau that was sustained for 2 h. CNP-induced relaxation was saturable, with a maximal decrease in tension (51.7 +/- 3.8 dyn) observed at 250 nM. SEM relaxation in response to CNP constituted approximately 23% of total basal tension. CNP increased intracellular cGMP content and reduced MLC phosphorylation. Effects of CNP on cGMP and MLC exhibited the same dose dependence as CNP-induced relaxation. MLC phosphorylation decreased within 2 min of CNP exposure and was sustained for at least 45 min. CNP also stimulated a large transient increase in cytosolic Ca2+ concentration that occurred within 30 s and was nearly complete by 1 min. We also observed that calyculin-A, a potent inhibitor of MLC phosphatase, completely abolished the reduction in MLC phosphorylation induced by CNP. These results suggest that CNP induces intestinal SEM relaxation through cGMP-associated reductions in MLC phosphorylation. Moreover, these findings raise the possibility that CNP plays a role in intestinal wound healing.
منابع مشابه
Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-β mediated fibrosis
BACKGROUND Mechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechan...
متن کاملIntrinsic defence capacity and therapeutic potential of natriuretic peptides in pulmonary hypertension associated with lung fibrosis
BACKGROUND AND PURPOSE Idiopathic pulmonary fibrosis (IPF) is a progressive fibro-proliferative disorder refractory to current therapy commonly complicated by the development of pulmonary hypertension (PH); the associated morbidity and mortality are substantial. Natriuretic peptides possess vasodilator and anti-fibrotic actions, and pharmacological augmentation of their bioactivity ameliorates ...
متن کاملInhibition of pathological differentiation of valvular interstitial cells by C-type natriuretic peptide.
OBJECTIVE Calcific aortic valve disease is associated with the differentiation of valvular interstitial cells (VICs) to myofibroblast and osteoblast-like cells, particularly in the fibrosa layer of the valve. Previous studies suggested that C-type natriuretic peptide (CNP) protects against calcific aortic valve disease to maintain homeostasis. We aimed to determine whether CNP inhibits VIC path...
متن کاملDendroaspis natriuretic peptide relaxes isolated human arteries and veins.
BACKGROUND Dendroaspis natriuretic peptide (DNP) is the newest member of the natriuretic peptide family and is a circulating peptide in humans. The effects of DNP on the human vasculature are unknown. Since other natriuretic peptides are known to cause vasorelaxation, we determined the response to DNP on human blood vessels in vitro. We also investigated the mechanism of DNP mediated vasorelaxa...
متن کاملAtrial Natriuretic Peptide Inhibits Transforming Growth Factor –Induced Smad Signaling and Myofibroblast Transformation in Mouse Cardiac Fibroblasts
This study tested the hypothesis that activation of atrial natriuretic peptide (ANP)/cGMP/protein kinase G signaling inhibits transforming growth factor (TGF)1–induced extracellular matrix expression in cardiac fibroblasts and defined the specific site(s) at which this molecular merging of signaling pathways occurs. Left ventricular hypertrophy and fibrosis, collagen deposition, and myofibrobla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 286 1 شماره
صفحات -
تاریخ انتشار 2004